

100Gbps QSFP28 LR4 Transceivers TR-D661-DF1M-00A1

VERSION1 Feb. 2017

www.cambridgeig.com

1

Notice:

Description

TR-D661-DF1M-OOA1 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 LAN-WDM4 Transceiver for InfiniBand EDR/FDR/QDR/DDR/SDR, 28G/14G/10G/8G/4G fiber channels, PCIE and SAS Applications. The data is transmitted bi-directionally with aggregate bandwidth of 100Gbps by four coarse WDM wavelengths normally at 1295nm, 1300nm, 1304nm, and 1309nm.The QSFP full-duplex optical module offers 4 independent transmit and receive channels. The optical transceiver module utilizes the optical engine designs and System in Package (SIP) integration technology, altogether with selected high quality DBF laser and PIN PDs to achieve reliable packet communication within data center.

Features

- Compliant to IEEE 802.3bm electrical specifications
- Compliant to QSFP28 MSA Specifications
- Four-channel full-duplex transceiver modules
- Up to 10km link length over single mode fiber at 100Gbps
- Low power consumption: Max. 3.5W
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- 4x26Gb/s DFB-based LAN-WDM Transmitter
- RoHS 6 compliant
- Hot Pluggable QSFP form factor
- Duplex LC receptacles
- Built-in digital diagnostic function
- I²C Management Interface

2

Notice:

CIG

Applications

- 100GBASE-LR4 100G Ethernet
- Proprietary Interconnections
- Infiniband 4X SDR DDR QDR

Specification

Absolute Maximum Ratings											
Parameter	Symbol	Min	Typical	Max	Unit	Notes					
Storage Temperature	Tstg	-40	-	+85	°C						
Supply Voltage	Vcc3	-0.3		3.6	V						
Operating Relative Humidity	RH	0	-	+85	%						

Recommended Operating Conditions											
Parameter	Symbol	Min	Typical	Max	Unit	Notes					
Operating Case temperature	Та	0	-	+70	°C						
Supply Voltage	Vссз	3.13	3.3	3.47	V						
Power Consumption				1.5	W						
Data Rate			25.78125		Gbps						
Link Distance with SM Fiber		0	2	-	Km						
Data Speed Tolerance	ΔDR	-100		+100	ppm						

Transmitter Operating Characteristic-Optical, Electrical											
Parameter	Symbol	Min	Typical	Max	Units	Notes					
Centre Wavelength Ch0		1294.		1296.5							
	_	53		9		Note1					
Contro Wayolongth Ch1		1299.		1301.0							
	λα	02		9	nm						
Contro Wayalanath Ch2		1303.		1305.6							
		54		3							
Centre Wavelength Ch3		1308.		1310.1							

Notice:

CIG =

		09		9		
Average Optical Power, each Lane	Pavg	-1.3	-	4.5	dBm	
Average Launch Power OFF Transmitter, each Lane	Poff	-	-	-30	dBm	
Optical Modulation Amplitude (OMA), each Lane	Poma	-1.0	-	4.5	dBm	Note1
Optical Return Loss Tolerance	RL	-	-	20	dB	
Transmitter Reflectance	RT	-	-	-12	dB	
Extinction Ratio	ER	4.0	-		dB	
Rise/Fall Time , 20%~80%	Tr/Tf		-	12	Ps	
Side mode Suppression ratio	SSR	30	-	-	dB	
Transmitter Eye Mask Margin	EMM	10	20	-	%	Note2
Transmitter Eye Width		-	0.46	-	UI	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}			{0.25, 0.4,	0.45, 0.25	5, 0.28, 0.4	\$}

Notes:

[1] Transmitter wavelength, RMS spectral width and power need to meet the OMA minus TDP specs to guarantee link performance

[2] The eye diagram is tested with 1000 waveform

Receiver Operating Characteristic-Optical, Electrical											
Parameter	Symbol	Min	Typical	Max	Units	Notes					
Centre Wavelength Ch0		1294. 53		1296.59		Note1					
Centre Wavelength Ch1	N	1299. 02		1301.09							
Centre Wavelength Ch2	VC	1303. 54		1305.63	nm						
Centre Wavelength Ch3		1308. 09		1310.19							
Signaling Speed per Lane			25.7812 5		Gb/s	Note1					
Receive Sensitivity in OMA, each Lane	SEN	-	-	-8.6	dBm	Note2					
Damage Threshold	THd	+3	-		dBm						
Stressed Receiver Sensitivity in OMA, each Lane	SRS	-	-	-6.8	dBm						
Los Assert	LOSA	-24	-	-13.6	dBm						
Los Dessert	LOSD		-	-11.6	dBm						

4

Notice:

Los Hysteresis	LOSH	0.5	1.5	-	dB	
Overload each Lane	OVL	+2.4	-		dBm	
Receiver Reflectance		_	-	-12	dB	

Notes:

[1] Receiver consists of 4 photodetectors operating at a maximum rate of 25.78Gb/s each

[2] Receiver sensitivity is informative. Stressed receiver sensitivity shall be measured with conformance test signal for BER = $5x \ 10^{-5}$

Electrical Specifications											
Parameter	Symbol	Min	Typical	Max	Units	Notes					
Differential input impedance	Zin	90	100	110	ohm						
Differential Output impedance	Zout	90	100	110	ohm						
Differential input voltage amplitude	ΔVin	300		2800	mVp-p						
Differential output voltage amplitude	ΔVout	400		800	mVp-p						
Input Logic Level High	VIH	2.0		VCC	V						
Input Logic Level Low	VIL	0		0.8	V						
Output Logic Level High	VOH	VCC- 0.5		VCC	V						
Output Logic Level Low	VOH	0		0.4	V						
Bit Error Rate	BR	0		5 x	10 ⁻⁵						

Notice:

Pin Diagram

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Figure1

Pin-out Definition

Pi n	Logic	Name	Description	Note
1	GND	GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4	GND	GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7	GND	GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	

6

Notice:

10	VccRx	VccRx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	
30		Vcc1	+3.3 V Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

[1] Module circuit ground is isolated from module chassis ground within the module. GND is the symbol for signal and supply (power) common for QSFP28 modules.

Notice:

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP28 modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host.

ModSelL has an internal pull-up in the module.

ResetL Pin

Reset. LPMode_ Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset

LPMode Pin

The QSFP28 CR4 operates in the low power mode (less than 1.5 W power consumption). This pin active high will decrease power consumption to less than 1W.

Notice:

CIG have the sole right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice, CIG has the final interpretation.

ModPrsL Pin

ModPrsL is pulled up to VCC on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and will be deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a critical status to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to VCC on the host board.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 2

Notice:

9

DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all Cambridge QSFP28 LR4 (Tx power monitor DDM function per customer request). A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in Figure 5. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Parameter	Symbol	Min	Typical	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3		+3	degC	Over operating temp
Supply voltage monitor absolute error	DMI _VCC	-0.1		0.1	V	Full operating range
Channel RX power monitor absolute error	DMI_RX	-3	-	3	db	Per channel
Channel Bias current monitor	DMI_Ibias	- 10%		10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	-	3	db	Per channel

10

Notice:

CIG

Dimensions

Ordering Information

Davit Nie		Specification										
Part No.	Pack	Rate	Тх	Pout	Rx	S	Тор	Reach				
TR-D661-DF1M- 00A1	QSFP28	100G	LWDM DFB	-1.3 ~ 4.5dBm	PIN	<- 8.6dBm	0∼ 70℃	10Km				

WARNING

Handling Precautions: This device is easy to be damaged as a result of ESD. A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

11

Notice:

Contact Information

Cambridge Industries USA Inc.

2445 Augustine Drive, 6th Floor, Santa Clara, CA 95054 Tel: (408) 675 9788

Email: nasales@cambridgeig.com

Copyright Cambridge Technology Co. ,Ltd., 2013

All rights reserved

12

Notice: